Search results for " Principal Component Analysis"
showing 10 items of 71 documents
Image enhancement by region detection on CFA data images
2007
Sign and Rank Covariance Matrices: Statistical Properties and Application to Principal Components Analysis
2002
In this paper, the estimation of covariance matrices based on multivariate sign and rank vectors is discussed. Equivariance and robustness properties of the sign and rank covariance matrices are described. We show their use for the principal components analysis (PCA) problem. Limiting efficiencies of the estimation procedures for PCA are compared.
Reproducing kernel hilbert spaces regression methods for genomic assisted prediction of quantitative traits.
2008
Abstract Reproducing kernel Hilbert spaces regression procedures for prediction of total genetic value for quantitative traits, which make use of phenotypic and genomic data simultaneously, are discussed from a theoretical perspective. It is argued that a nonparametric treatment may be needed for capturing the multiple and complex interactions potentially arising in whole-genome models, i.e., those based on thousands of single-nucleotide polymorphism (SNP) markers. After a review of reproducing kernel Hilbert spaces regression, it is shown that the statistical specification admits a standard mixed-effects linear model representation, with smoothing parameters treated as variance components.…
Explicit signal to noise ratio in reproducing kernel Hilbert spaces
2011
This paper introduces a nonlinear feature extraction method based on kernels for remote sensing data analysis. The proposed approach is based on the minimum noise fraction (MNF) transform, which maximizes the signal variance while also minimizing the estimated noise variance. We here propose an alternative kernel MNF (KMNF) in which the noise is explicitly estimated in the reproducing kernel Hilbert space. This enables KMNF dealing with non-linear relations between the noise and the signal features jointly. Results show that the proposed KMNF provides the most noise-free features when confronted with PCA, MNF, KPCA, and the previous version of KMNF. Extracted features with the explicit KMNF…
Missing Value Estimation for Microarray Data by Bayesian Principal Component Analysis and Iterative Local Least Squares
2013
Published version of an article from the journal: Mathematical Problems in Engineering. Also available from Hindawi: http://dx.doi.org/10.1155/2013/162938 Missing values are prevalent in microarray data, they course negative influence on downstream microarray analyses, and thus they should be estimated from known values. We propose a BPCA-iLLS method, which is an integration of two commonly used missing value estimation methods-Bayesian principal component analysis (BPCA) and local least squares (LLS). The inferior row-average procedure in LLS is replaced with BPCA, and the least squares method is put into an iterative framework. Comparative result shows that the proposed method has obtaine…
Weighted samples, kernel density estimators and convergence
2003
This note extends the standard kernel density estimator to the case of weighted samples in several ways. In the first place I consider the obvious extension by substituting the simple sum in the definition of the estimator by a weighted sum, but I also consider other alternatives of introducing weights, based on adaptive kernel density estimators, and consider the weights as indicators of the informational content of the observations and in this sense as signals of the local density of the data. All these ideas are shown using the Penn World Table in the context of the macroeconomic convergence issue.
A new methodology based on functional principal component analysis tostudy postural stability post-stroke
2018
[EN] Background. A major goal in stroke rehabilitation is the establishment of more effective physical therapy techniques to recover postural stability. Functional Principal Component Analysis provides greater insight into recovery trends. However, when missing values exist, obtaining functional data presents some difficulties. The purpose of this study was to reveal an alternative technique for obtaining the Functional Principal Components without requiring the conversion to functional data beforehand and to investigate this methodology to determine the effect of specific physical therapy techniques in balance recovery trends in elderly subjects with hemiplegia post-stroke. Methods: A rand…
STATISTICAL METHODS FOR THE DISCRIMINATION OF FOUR FORMS OF DIPLEGIA
A Statistical Approach for A-Posteriori Deployment of Microclimate Sensors in Museums: A Case Study
2022
[EN] The deployment of sensors is the first issue encountered when microclimate monitoring is planned in spaces devoted to the conservation of artworks. Sometimes, the first decision regarding the position of sensors may not be suitable for characterising the microclimate close to climate sensitive artworks or should be revised in light of new circumstances. This paper fits into this context by proposing a rational approach for a posteriori deployment of microclimate sensors in museums where long-term temperature and relative humidity observations were available (here, the Rosenborg Castle, Copenhagen, Denmark). Different statistical tools such as box-and-whisker plots, principal component …
Prototyping Crop Traits Retrieval Models for CHIME: Dimensionality Reduction Strategies Applied to PRISMA Data
2022
In preparation for new-generation imaging spectrometer missions and the accompanying unprecedented inflow of hyperspectral data, optimized models are needed to generate vegetation traits routinely. Hybrid models, combining radiative transfer models with machine learning algorithms, are preferred, however, dealing with spectral collinearity imposes an additional challenge. In this study, we analyzed two spectral dimensionality reduction methods: principal component analysis (PCA) and band ranking (BR), embedded in a hybrid workflow for the retrieval of specific leaf area (SLA), leaf area index (LAI), canopy water content (CWC), canopy chlorophyll content (CCC), the fraction of absorbed photo…